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Abstract

It is assumed that exit and entry of fishermen, as well as vessels, is not instantaneous. The wage

rate varies with the fortunes of the fishing firms and affects the endogenous labour supply cre-

ating a second transmission mechanism from profits to effort. There are realistic cases where this

mechanism has important effects on the stability of the dynamic system and on the effects of

taxes (subsisdies) on the size of the fish stock. If labour supply depends negatively on the wage

rate, the immediate effect of an increase in the tax rate is to increase effort and harvest. In some

cases the increase in the tax rate increases overexploitation also in the long term. This outcome

is highly probable if the dynamic system is unstable.
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I  Introduction 

It is commonly assumed in models of commercial fisheries, that the unit prices of 

inputs are independent of the fortunes of the fishing firms. This is the case in the 

classical models of Gordon (1954) and Scott (1955) and in the models in Clark (1980 

and 1990). In Smith’s (1968 and 1969) celebrated dynamic models of commercial 

fisheries the unit prices of inputs are independent of the fortunes of the fishing firms, 

but the firms’ profits/losses induce gradual entry and exit of firms (vessels). The 

model in this paper is based on Smith’s model. However, it differs from this model in 

two respects. Firstly, it is allowed that not only capital adjusts gradually, but that the 

adjustment of labour is also sluggish. This does seem realistic in many cases as lack 

of alternative employment, sunk cost in acquired labour skills and even attachment to 

fishermen’s “way of life” make fishermen frequently hesitate before leaving the 

industry.  

If labour adjusts sluggishly, it is reasonable to expect that the wage rate deviates 

temporarily from the market wage in some alternative employment. When the fishery 

is profitable and new vessels enter, the wage rate increases above the alternative wage 

rate to attract the required number of fishermen, while if the fishery is making losses, 

and some vessels are leaving the industry, the wage rate is under pressure and 

decreases so as to reduce the unemployment of fishermen. In this case the wage rate 

depends on the profitability of fisheries. 

The use of sharing for remunerating the crew, which prevails in most fisheries, 

makes the unit cost of labour vary with the economic conditions of the firms. In most 

cases the parameters of the share contracts are rather inflexible and respond sluggishly 

to excess demand in the market for fishermen’s labour. The analysis below covers the 

case where the fishermen’s remuneration is based on a wage rate, which is flexible 
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and responds to the conditions in the market for fishermen’s labour, and also the case 

where the fishermen are paid a share with rigid share parameters. 

The second innovation compared to Smith’s model is that labour supply is made 

endogenous. If a change in the wage rate makes it optimal for the fishermen to alter 

their labour supply it is assumed that this change is met by changing the length of the 

fishing trip or by changing the intensity of the work.  

It will be shown below that allowing the wage rate to change, and allowing the 

fishermen’s supply of labour to respond to these changes in the wage rate, affects the 

stability of the equilibrium positions of the model. These assumptions also affect how 

changes in taxes/subsidies affect effort, harvest and the size of the fish stock. In the 

classical models, where the wage rate is independent of the fortunes of the fishing 

firms, an increase in a tax on fishing (or a decrease in subsidies to fisheries) lowers 

the profitability. Effort decreases immediately because losses induce exit of vessels. 

The size of the stock increases also in the long-term in most cases. In the model in the 

present paper an increase in the tax rate on fishing reduces the profitability of the 

fisheries. But the wage rate in the fisheries decreases also. The decrease in 

profitability induces some exit of firms. However, the decrease in the wage rate may 

also cause the fishermen that remain in the industry to change their supply of labour. 

If the decrease in the wage rate induces an increase in the supply of labour, the 

immediate effect of a discrete increase in the tax rate is an increase in effort and catch 

and a reduction in the stock size. If the dynamic system is stable, the gradual exit of 

vessels reduces effort. In most cases this brings the system back to a stable 

equilibrium where the stock is larger as predicted by the classical models. But if the 

dynamic system is not stable an increase in the tax rate may lead to serious 
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overfishing and even to a collapse of the stock. These results have obvious 

consequences for the efficiency of taxes for managing fisheries.† 

The paper is organised so that Section II sets out the basic model where, as in 

Smith’s model, capital (number of vessels) adjusts sluggishly. Section III discusses 

stability of the dynamic system where also labour adjusts sluggishly. In this section it 

is assumed that the wage rate is perfectly flexible so that there is never any 

unemployment of labour. Section IV discusses the effects of changes in the 

tax/subsidy rate. Section V discusses the case where labour is remunerated with a 

share and Section VI concludes. 

 

II The basic model 

All fishermen are assumed identical, each possessing the utility function 

),,( lfcuu = ,       (1) 

where f  is consumption of fish, c  is consumption of other goods than fish and l  is 

labour. The fishermen’s utility is assumed to depend positively on the consumption of 

f  and c , but negatively on l . 

If the price of fish is constant it is reasonable to aggregate f  and c  into an 

aggregate consumption bundle. However, if the price of fish varies that aggregation is 

only approximately valid. In this paper we are studying cases where there are large 

variations in the supply of fish. It is therefore logical in a general equilibrium model 

to specify the consumption of this fish in the utility functions. After deriving the 

relevant formulas below we will point out some conclusions that depend on the 

                                                           
† See Clark (1980 and 1990) on the efficiency of management with taxes. See also Weitzman (2002) 
for a recent eloquent arguments for the efficiency of using taxes for managing fisheries where there is 
uncertainty concerning the growth of the fish stock. 
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assumption that the effect of changes in f  are small because f  is only a small part 

of the total consumption. This assumption seems to be realistic in most cases. 

 The fisheremen are assumed to be price takers in all markets. They decide their 

consumption of c  and f  and their supply of l  by solving 

  ( )lfcu
lfc

,,max
,,

 subject to fpcplw fcf += .   (2) 

Solving (2) gives consumption of f  and c  and the supply of l  as functions of 

the relative prices. To simplify the notation the price of c  is set as a numéraire, i.e. 

cp =1. It is then possible to write the solution for the labour supply as 

  ),( ff pwll =        (3) 

It is not possible to determine the signs of the partial derivatives of the function in 

(3) on purely theoretical grounds. An increase in fw  makes leisure more expensive 

and therefore induces substitution from leisure. However, the increase in fw  also 

increases the fishermen’s incomes, which means that if leisure is a normal good the 

income effect of an increase in fw  is positive. It is the sum of the substitution effect 

from leisure and the income effect towards increasing leisure that determines the 

effect of an increase in fw  on the volume of leisure consumed and labour supplied. 

Similarly, for an increase in fp , the substitution effect on leisure is positive while the 

income effect is negative if leisure is a normal good, making the total effect 

indeterminate. 

Let n  be the number of identical vessels (firms). The size of the crew is fixed at 

Lα . The fishing effort of each vessel is determined by the size of the crew and the 

supply of labour by each fisherman. The crew supplies lLα  units of labour. Given the 

proper supply of intermediary goods all units of labour are equally efficient. The ratio 
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of intermediary goods to labour is assumed fixed, in which case the volume of 

intermediary goods used by each vessel in a given period can be written as lIα  where 

Iα  is a constant. 

Productivity of fishing effort is assumed to depend on the size of the fish stock. 

This dependency is described by the non-decreasing function )(xh . If )(xh  gives the 

catch of each vessel per unit of labour supplied by the crew, the total catch ( H ) in 

each (instant) period is given by 

  ),()( ff pwlxhnH ⋅⋅=      (4) 

Smith (1969) pointed out that if there is crowding in the fishing grounds the 

function h  depends negatively on n  besides x . This would make the model 

considerably more complicated and probably give rise to some unexpected dynamics. 

Following Smith (1969) this possibility will be ignored below. 

It was assumed above that, given the size of the stock, the harvest per vessel is 

proportional to the necessary input of labour and intermediary goods. This assumption 

contributes to keeping the model simple. It also seems reasonably realistic. However, 

it does limit somewhat the possible dynamics, e.g. compared to Smith’s (1969) model 

where the firm’s marginal cost of fishing is assumed to increase with catch. It is the 

rapid increases in the marginal cost assumed in the specific examples given in Smith 

(1969) that create large part of the non-linearity, which gives rise to the varied 

dynamics. 

Given the function for the total harvest in (4) the growth of the fish stock per unit 

of time ( x& ) is determined by  

  ),()()( ff pwlxnhxGx −=& ,     (5) 

where G  is a concave function. 

The profit function for the individual vessel (firm) is given by 
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( ) Flwphp LfIIf −−−−= αατπ )( ,   (6) 

where τ  is a tax (or subsidy if τ <0) per unit of catch, Ip  is the price of intermediary 

goods and F  is the fixed cost per vessel.  

A tax per unit of catch is assumed the only special tax on fishing. Price subsidies 

are a negative tax of this sort. Assuming only one type of tax on fishing is obviously a 

simplification. Subsidies of fuel and subsidies of capital cost are also frequently 

observed. It should also be noted that if taxes are used to regulate effort they could be 

levied on some measure of effort (e.g. fuel), or per vessel, rather than per unit of 

catch. However, as the results will not change qualitatively if the taxes/subsidies are 

levied differently, the discussion below will be limited to the case where there is a tax 

(or subsidy) per unit of catch. 

As in Smith (1969) the number of vessels in the fishery is determined by the 

differential equation 

  γπ=n& ,       (7) 

where γ  is a positive constant determining the speed of adjustment. If ∞→γ  the 

adjustment in n  has to be instantaneous so that π =0 at all times. 

The consequences of allowing that the wage rate in fishing deviates from the 

alternative wage rate will be explored below. In each case a wage equation, which 

gives the value of the wage rate in fishing ( fw ) at each moment of time, will be 

specified. The wage equation completes the model. The initial conditions for the state 

variables, )0(x  and )0(n , together with the wage equation, the profit equation in (6) 

and the differential equations in (5) and (7), form a complete system that gives 

solutions for the state variables, )(tx  and )(tn , at all times.  
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The equations 

  0),()()( =− ff pwlxnhxG ,     (8) 

and  ( )( ) 0)( =−−−− FlwphHp LfIIf αατ    (9) 

give the equilibrium values for x  and n . If 0x  and 0n  are solutions to (8) and (9) a 

first order Taylor-expansion of (5) and (7) around these equilibrium values gives the 

following system of linear differential equations 

  )()( 00 xx
x

nn
n

n −
∂
∂

+−
∂
∂

=
πγπγ&     (10) 

and  )()()()(
00 xx

x
hln

x
Gnn

n
nlhx −








∂
∂

−
∂
∂

+−
∂
∂

−=& ,  (11) 

that can be used to determine if the equilibrium at ( 0x , 0n ) is locally stable. The 

characteristic equation for the system in (10) and (11) is 

02 =+− DT γλλ ,      (12) 

where  

T  = 
x
hln

x
G

n ∂
∂

−
∂
∂

+
∂
∂ )(πγ       (13) 

is the trace of the coefficient matrix for the dynamic system in (10) and (11), while D  

is its determinant, i.e. 

  
xhlnxGnnlh

xn
D

∂∂−∂∂∂∂−
∂∂∂∂

=
)()(

ππ
.   (14) 

If D  is negative, the roots of the characteristic equation are real and have 

opposite signs. In this case the equilibrium is a saddle point. If D  is positive then the 

real parts of the roots have the same sign. If also T <0, the real parts of the roots are 

negative, and the equilibrium is locally stable, while if T >0, the real parts of the roots 

are positive, and the equilibrium is locally unstable. 
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Comparative statics can be used to study the long-term effects of a change in the 

tax/subsidy rate (τ ) when the dynamic system is stable. Differentiating (8) and (9) 

totally with respect to n , x  and τ  gives 

  0=
∂
∂

+
∂
∂

+
∂
∂ τ

τ
πππ ddx

x
dn

n
     (15) 

and  0)()(
=

∂
∂

−







∂
∂

−
∂
∂

+
∂
∂

− τ
τ

dlnhdx
x
hln

x
Gdn

n
nlh   (16) 

Solving for the effect of a change in τ  on x  gives 









∂
∂

∂
∂

−
∂
∂

∂
∂

=
τ
π

τ
π

τ n
nll

n
n

D
h

d
dx )( .    (17) 

 

III Sluggish adjustment of labour 

Let the sluggish adjustment of labour be determined by the differential equation 

 ( )of wwm −= µ& ,      (18) 

where m&  is the change in the number of fishermen per unit of time, ow  is the wage 

rate in the alternative employment and µ  is a positive constant. If γ , µ  and fw  are 

such that vessels exit faster than fishermen, then the excess supply of labour creates 

downward pressure on the wage rate in fishing. The decline in fw  reduces the rate of 

exit of vessels. If fw  is perfectly flexible it adjusts to the value where there is 

equilibrium between supply and demand for fishermen’s labour. If there is 

equilibrium in the market for fishermen’s labour at a given moment in time, this 

market will remain in equilibrium if Lα  fishermen exit for every vessel, i.e. if 

  mnL && =α        (19) 

Substituting from (6), (7) and (18) into (19), and solving for fw , gives 
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  ( )[ ]Flwphp
l

ww LoIIf
L

L
of −−−−

+
+= αατ

γαµ
γα )(2 . (20) 

If ∞→µ , while γ  finite, (20) gives that of ww = . This is the assumption that 

has been made in most models of commercial fisheries. At the other extreme, if µ =0, 

while γ >0, the wage rate must adjust so that there is no exit of vessels to prevent 

unemployment of fishermen. This happens if 

  ( )[ ]Flwphp
l

ww LoIIf
L

of −−−−+= αατ
α

)(1 .  (20’) 

In this case 0=π  at all times.  

Substituting from (20) into (6) gives that 

  ( )[ ]Flwphp
l LoIIf

L

−−−−
+

= αατ
γαµ
µπ )(2 ,  (21) 

which shows that the sluggish adjustment processes for labour and capital, assumed 

above, lead to a profit sharing arrangement where the share of each party is 

determined by µγ , i.e. their relative readiness to leave the industry.  

Given the wage equation in (19) the model in Section II above is complete. It is 

possible to show (see Appendix A) that in this case the determinant in (14) is given by 

( )



























−













+−

−
++

+
=

f

f

f

f

f

f

pH

pl
F

pH
L

L

wl

xh
f

f
plF

pH

xG

f

L
sl

s

p
p

s

x
hlp

l
hlD

,

,

,

,

,,
,

,

2
11

)(
1

),(

ε

ε

ε
ϕα

ε

ε
τ

ε
ε
ε

γαµ
µµγ , (22) 

where 
G
x

x
G

xG ∂
∂

=,ε , 
H
p

p
H f

f
pH f ∂

∂
=,ε , 

l
p

p
l f

f
pl f ∂

∂
=,ε , 

l
w

w
l f

f
wl f ∂

∂
=,ε  and 

h
x

x
h

xh ∂
∂

=,ε   are elasticities and 
hlp

lw
s

f

lL
L

α
=  and 

hlp
Fs
f

F =  are cost shares. 
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lL

L
2γαµ

γα
ϕ

+
= , and µ  and γ  are non-negative. It follows that 10 ≤≤ ϕα lL . If µ  

is large compared to lL
2γα , then ϕα lL  is near zero, while if µ  is small compared to 

lL
2γα , then ϕα lL  is near unity. In the classical models ∞→µ , γ  is finite, and ϕ =0. 

The elasticity xG ,ε  can be negative or positive. If the growth function is strictly 

concave xG ,ε  is positive for )(MSYxx <  and negative for )(MSYxx > , where 

)(MSYx  is the stock size, which gives the Maximum Sustainable Yield. In the case of 

the logistic growth function, ( )KxrxxG −= 1)( , where r  and K  are parameters, 

 
xK
xK

xG −
−

=
2

,ε .      (23) 

It follows directly from (23) that for possible values of x , i.e. Kx ≤≤0 , then 

1, ≤<∞− xGε . 

It is assumed that 
fpH ,ε <0 and that catch per unit of effort (CPUE) increases with 

the size of the stock, i.e. xh,ε >0. If −∞→
fpH ,ε  and ∞→µ  (and therefore ϕ =0), 

then ),( ∞γD  is positive. As 
fpl ,ε  is small in realistic cases it is to be expected that 

),( µγD  is positive in most realistic cases.  

It is possible to show (see Appendix A) that given the wage equation in (20), T  

in (13) can be written as 

( )























−













+−

+

+
=

f

f

f

f

f

f

pH

pl
F

pHL

Lwl

plF
f

pH

L
s

s

l

s
n
hlp
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,

,
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,

,
,
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11

11

),(

ε

ε

ε

ϕαε

ε
ε

γαµ
γµµγ  
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
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f
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f
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pH
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I
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s
s

l
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s

l

x
nhl

,

,

,

,

,,

,
11

11

ε

ε

ε

ϕαε

εϕαε
ε ,  (24) 

where )( hpps fIII α=  is the share of revenue needed to cover the cost of 

intermediary goods. 

In the classical case where ∞→µ , and therefore ϕ =0, ),( ∞γT  is negative in 

most realistic cases. It should though be noted that if also the elasticity of demand for 

fish is very high ( −∞→
fpH ,ε ), the first term on the right hand side in (24) is zero. In 

this case ),( ∞γT  is positive if xG ,ε > xh,ε . As xh,ε >0 this can only happen if the fish 

stock is overfished, i.e. if )(MSYxx <  and xG ,ε >0. 

The terms on the right hand side in (24), which depend on 
fwl ,ε , make it possible 

that the sign of ),( µγT  is different from the sign of ),( ∞γT . The probability that 

),( µγT  is positive, and the dynamic system is unstable, increases when 
fwl ,ε  is large 

and negative and ϕ  is close to unity because µ  is low. Note finally, that it is possible 

to set µ  so low that the second term on the right hand side in (24) determines the sign 

of ),( µγT . Increasing µ  makes the first term a larger negative number. 

 

IV Changes in the tax rate 

Besides affecting the stability of the dynamic system, slow exit and entry of fishermen 

and endogenous labour supply affects how changes in the tax/subsidy rate (τ ) affects 

the fish stock. Comparative statics can be used to analyse the long-term effect when 

the dynamic system is stable. Using that if µ >0, then fw  = ow  in the long-term 

equilibrium, substitution into (17) in Section II gives that (see Appendix A) 
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)1)(,( ,,

22

ff pHplD
lh

d
dx

εεµγτ −
=     (25) 

As ),( µγD >0 and 
fpl ,ε  is small in realistic cases, the expression in (25) is 

positive. In these cases, the long-term effect of an increase in the tax rate is to 

conserve the fish stock. 

If labour adjusts immediately, i.e. if ∞→µ , or if the labour supply does not 

increase when the wage rate decreases, i.e. if ≥
fwl ,ε 0, the immediate effect of an 

increase in the tax rate is a decrease in effort. However, if labour adjusts sluggishly 

and 
fwl ,ε <0, the immediate effect of a discrete increase in the tax rate is to increase 

effort and overfishing through increasing the fishermen’s supply of labour. If the 

dynamic system is stable the increase in the tax rate induces exit of vessels and 

fishermen, which reduces effort, and the system eventually returns to a stable 

equilibrium where the stock is larger as predicted by (25). It is though far from certain 

that this will happen. The impact effect of increasing the supply of labour may be so 

strong, and the rate of exit of vessels so slow, that an increase in the tax rate will 

speed up the collapse of the stock. This is especially likely if the dynamic system is 

unstable. 

To illustrate the analytical discussion above, let us consider some possible 

outcomes of the model. The values of the parameters in these examples have been 

chosen so that 
fwl ,ε  is negative making instability and unconventional effects of 

changes in tax/subsidy rates probable. It should though be noted that it is not 

necessary to search for extreme parmeter values for producing these results. It is not 

difficult to find realistic parameter values that produce similar, unconventional, 

results. 
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The utility function and its parameters are discussed in Appendix C. There, the 

labour supply function and the demand function for fish are derived. The values of the 

parmeters of the utility functions have been chosen so that 
fwl ,ε = -0.46, 

fpH ,ε =-2 and 

fpl ,ε =0.0098. In all cases the growth of the fish stock is determined by the logistic 

growth function with r  = 0.56 and K  = 2.5 million tonnes. The parameters have been 

chosen so that the price of fish is 0.388 when the supply of fish is at the maximum 

sustainable level of 350,000 tonnes. In Figure 1 the isoclines are calculated for the 

case where the tax rate (τ ) is 0.1, the coefficient for the input of intermediary goods 

( Iα ) is 3 and the coefficient for labour ( Lα ) is 14. It is assumed that ωqxxh =)( . The 

catchability coefficient ( q ) is 0.065 and the elasticity of the CPUE with respect to the 

stock ( xh,εω = ) is 0.5, the price of intermediary goods ( Ip ) is 1, the alternative wage 

( ow ) is 1 and the fixed cost ( F ) is 100. 

The line in Figure 1 marked “x-dot=0” gives the isocline for the values on x  and 

n  such that the condition in (8) is met, while the line marked “n-dot=0” gives the 

isocline in (9). In both cases fw = ow . Figure 1 shows that the dynamic system has 

two equilibrium values, one at x  = 82,362 tonnes and the other at x  = 816,337 

tonnes. The first one is locally unstable even in the classical case where labour adjusts 

immediately and ∞=µ . The second one is locally stable in this case.  
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Figure 1 

Phase diagram (tax=0.1) and trajectories when the tax rate changes
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Besides the isoclines, Figure 1 shows some trajectories. The speed of exit and 

entry of vessels (γ ) is 0.01, while the number of fishermen adjusts immediately 

( ∞→µ ). The trajectories show what happens if the equilibrium is disturbed by a 

change in the tax rate. The system heads directly for a new stable equilibrium in all 

cases in spite of the rather low value of γ . When the tax rate is increased the stock 

size increases and when the tax rate is decreased the stock size decreases. In the case 

where the tax rate is lowered to τ =0.09, the new equilibrium is a stable focus and the 

stock declines below the new equilibrium value before eventually reaching the new 

equilibrium. 

Figure 2 shows what happens if the assumption of immediate adjustment of 

labour is relaxed. In this case µ =10. On the other hand γ  has been increased to 1. All 

other assumptions are the same in Figure 2 as in Figure 1. 
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Figure 2 

Phase diagram (tax=0.1) and trajectories when the tax rate changes
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All trajectories start at the equilibrium for τ =0.1, i.e. where x =816,337 tonnes. 

This equilibrium is unstable. The immediate effect of a decrease in the tax rate to 

τ =0.09 is to decrease effort and catch and therefore to increase the stock size. 

Gradually effort increases as new vessels enter the fishery which is more profitable 

because the tax rate has decreased and the size of the fish stock has increased. When 

the profits decline as the stock size starts to decline, the exit of vessels and fishermen 

is too slow and the stock collapses. 

In this case an increase in the tax rate to τ =0.11 or to τ =0.15 does not prevent 

the stock collapse. Actually the stock collapses faster if τ =0.15 than if τ =0.11 or 

τ =0.09. However, there must be some increase in the tax rate that is able to prevent 

the stock collapse. Figure 2 shows that if τ =0.2 the stock will, after a period of 

decline, return to a stable equilibrium where the size of the stock is 1.7 million tonnes. 

In most cases lower values on γ  and µ  increase the probability that the system is 

unstable and that a given increase in the tax rate will increase effort and catches in the 

long-run. The exact values on γ  and µ  where the system ceases to be stable and 
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becomes unstable depends on the utility function of the fishermen and on the profit 

function. 

It is intuitive that the value on µ  where the system becomes unstable (call it 

)(γµ s ) depends negatively on γ . It is possible to show that this is always the case if 

γ  exceeds some given value. It is also possible to show that sµ  approaches a given 

value assymtotically when ∞→γ . (See Appendix D for a formal discussion.)  In the 

case shown in Figures 1 and 2 this assymptotic value is )(∞sµ  = 51.4. In this case the 

value on sµ  is close to 51.4 when γ  is quite low. In this case )1(sµ  = 51.4, )1.0(sµ  

= 51.7, )01.0(sµ  = 54.4 and )001.0(sµ  = 116.3. These numbers can be compared to 

the number of fishermen which is around 1,000 when the number of vessels ( n  in 

Figures 1 and 2) is around 70. If the wage rate in fishing is 10% below the alternative 

wage rate ( ow  = 1) some 5 fishermen, or 0.5% of 1,000 leave the industry in each 

period when ∞→γ . 

Figure 3 shows the isoclines and some trajectories in the case where the subsidy 

rate is τ =-0.1, Iα =20, q =0.00025, xh,ε =0.9 and F =400. It is also assumed that 

γ =1 and that µ =1. All other assumptions are the same as in Figures 1 and 2. 
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Figure 3 

Phase diagram (tax=-0.1) and trajectories when the tax rate changes
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The only equilibrium in Figure 3 is at 1.33 million tonnes, i.e. well above 

)(MSYx  of 1.25 million tonnes. This equilibrium is unstable, but fairly small 

decrease in the subsidy rate brings about stability. The trajectory for the case where 

the subsidy rate is decreased to τ =-0.09 brings the system to a stable equilibrium 

after a period of considerable overfishing followed by a period of considerably 

smaller exploitation than the equilibrium exploitation. In this case abolishing all 

subsidies (τ =0) brings the system fairly fast to a new stable equilibrium with almost 

no initial decline in the stock, while if the subsidy rate is increased to τ =-0.11 the 

dynamic system produces a limit cycle. 

 

V The case of sharing 

In most parts of the world sharing is used for remunerating labour and capital. This 

makes the wage rate in most fisheries dependent on the fortunes of the firms. In most 

cases the parameters of the sharing contracts are fixed over a long period of time and 
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respond slowly to the conditions in the labour market. In this section it is assumed that 

the sharing parameters are fixed. 

The details of the share contracts vary somewhat, but most prescribe that the crew 

is paid a share of a sum which is calculated as the revenue minus the tax (or plus the 

price subsidy) and also minus some variable cost items. If σ  is the share ratio (per 

identical crew member), and Iρ  is the share of the cost of the intermediary goods that 

are shared, the wage rate per unit of labour is 

[ ]IIIff phpw αρτσ −−= )(  .    (26) 

Substituting (26) into (6) and using the resulting expression to calculate the 

determinant in (14) gives the following expression for the determinant (see Appendix 

B) 
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If 
fpl ,ε  is small, the expression in (26) can be approximated as 
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which shows that sD  can be negative if 
fpl ,ε  is sufficiently small and either 
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σα  is negative. In these cases the 

dynamic system is locally unstable. 

Substituting from (26) into (6) to calculate the terms in (13) gives that (See 

Appendix B) 
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If it is allowed that the share parameters can be fixed in the long term, then it is 

possible to have a long-term equilibrium where the wage rate in fishing is different 

from the wage rate in the alternative employment. In this case the comparative static 

analysis of a change in the tax rate on the size of the stock gives (see Appendix B) 
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If 
fpl ,ε  is small it is possible to use (27’) and substitute from it into (29) to get: 
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which is positive in most realistic cases. 

Figure 4 illustrates simulations where there is sharing with fixed parameters but 

in all other respects the assumptions are the same as in Figure 1 in the previous 

section. In the simulations in Figure 4 the share ratio is set so that fw  is equal to the 

alternative wage rate in the equilibrium where the stock size, x , is 816,337 tonnes 

and τ =0.1. This happens when σ =0.0592 and Iρ =0.5. The isoclines in Figure 4 are 

based on the assumption that the share parameters are fixed. In this case the zero-

profit isocline is practically identical to the one shown in Figure 1 because 

ff pHpl ,, εε is near zero. (If 
fpl ,ε =0 they would be exactly identical). However, the 

isocline for sustainable catches in Figure 4 differs from the one in Figure 1. The 

reason is that the equilibrium wage rate varies when the crew is remunerated with a 

share. Note also that a change in the tax rate affects both isoclines in Figure 4 while it 

affects only the zero-profit isocline in the case discussed in the previous section where 

the wage rate is fixed in equilibrium. 
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Figure 4 

Phase diagram (tax=0.1) and trajectories when the tax rate changes
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The equilibrium in Figure 4 is unstable when γ  = 0.01, which is the value used in 

Figure 1. A slight increase in the tax rate to τ  = 0.11 stabilizes the system. The new 

equilibrium is a stable focus and the system heads for this equilibrium after a period 

of overfishing followed by a period where the stock is significantly larger than its 

equilibrium size. A decline in the tax rate toτ =0.09, leads to an initial period where 

the stock increases, profitability increases and new vessels enter, followed by a period 

where the stock is overfished so that it collapses. The third trajectory shows what 

happens if there is a large increase in the tax rate to τ  = 0.15. In this case, the stock 

heads directly towards a collapse. 

 

VI Conclusions 

In this paper it has been shown that the assumption concerning the speed of 

adjustment of the number of fishermen affects significantly the results concerning the 

stability of equilibrium and concerning the effects of changes in the tax/subsidy rate 

on the size of the stock. In the model in this paper, the traditional assumption that the 
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wage rate is fixed and the number of fishermen adjusts immediately, gives, in most 

cases, that the dynamic system is stable. It also gives that an increase in the tax rate 

(decrease in subsidy rate) leads to a decrease in effort and therefore to an increase in 

the size of the stock. As the fishermen are assumed to leave the industry immediately 

when the wage rate is below the alternative wage rate, the incidence of a resource tax, 

borne by labour, is zero. If it is allowed that the adjustment of the number of 

fishermen and vessels is less than instantaneous the incidence of a resource tax is zero 

only in the long-run. The resource tax decreases profits and the wage rate in fisheries 

for a while. As described above, this decrease in the wage rate may lead the fishermen 

to increase their supply of labour making taxes a rather inefficient instrument for 

regulating fisheries. The incidence of the resource tax, borne by fishermen because 

they hesitate to leave the industry when profits and wage rates decline, creates an 

additional, political, difficulty for the use of taxes for managing fisheries. 

It was pointed out above that a decrease in subsidies to fisheries may lead to an 

immediate increase in effort. In some cases it also increases overfishing and speeds up 

the process towards a collapse of the stock. It was also pointed out that there is always 

some decrease in subsidies/increases in taxes that prevents overfishing. In some cases 

the increase in tax rates required for preventing overfishing is quite large. And, as in 

the numerical example in Section V above, where it was assumed that labour was 

remunerated with a share, it may happen that some increases in the tax rate bring the 

system to a stable equilibrium with lower rate of exploitation, while a larger increase 

leads to instability and to the collapse of the stock. In this case there exists a still 

larger increase in the tax rate that is able to prevent overfishing. This example shows 

that it is frequently quite difficult to estimate efficient changes in the tax/subsidy rate. 
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It is also probable that the size of the required changes will make it quite difficult, 

politically, to implement them. 

The results above should not be interpreted as a support for the use of subsidies in 

fisheries. There is ample evidence of the harmful effects of subsidies in world 

fisheries. (See e.g. the recent studies done for the OECD by Hannesson, 2001 and 

Cox, 2002. See also WWF, 2001.) However, the results in this paper show that effort 

to abolish susbsidies may encounter some serious complications in those cases where 

there is open access to the fishery. The analysis above indicates that these 

complications can be avoided if the managers increase the supply of alternative 

employment and so increase the speed of exit of fishermen. Another possibility is to 

put direct limitations on the effort or catch of those fishermen that remain in the 

industry. 
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Appendix A 

Differentiating (20) in Section III at equilibrium values for x  and n  gives 
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Differentiating (6) in Section II at equilibrium values and using (A1) and (A2) 
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Differentiating (3) in Section II and using (A2) gives 
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Using (A1)-(A7) gives: 
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Using (A1)-(A7) also gives that 
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Appendix B 

If there is sharing the wage rate is given by 
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Eliminating 
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In the same way it is possible to get that 
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Substitution into (14) in Section II and using (B1)-(B6) gives 
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If 
fpl ,ε  is small then, 
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Substitution into (13) in Section II and using (B1)-(B6) gives 
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If it is assumed that the share parameters are fixed in the long run then 

comparative static analysis gives the effect of a change in the tax on the equilibrium 

stock size. Substitution into (17) in Section II (and setting 
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If 
fpl ,ε  is small then (B7’) can be substituting into (B9) to get: 
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Appendix C 

The utility function used in the numerical examples is a variant of the CES function 
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where 121 =+ δδ . 0l  is the maximum labour time ( l ) and 0U  is the minimum utility 

from consuming f  units of fish and c  units of other consumption goods. a , b  and 

ρ  are parameters. The function bafc +  was preferred to the Cobb-Douglas function 

because the latter behaves unreasonably when the supply of fish is extremely small as 

is the case when a fish stock collapses. 

An individual with the utility function in (C1) must have income so as to be able 

to buy c  and f  so that 0Uafc b ≥+ . For this it must be the case that 
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i.e. the maximum income cannot be lower than the cost of the volumes of c  and f  

that minimise fpcp fc +  subject to the constraint that 0Uafc b ≥+ . In the numerical 
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simulations the condition in (C2) has been used to restrict movements in the wage 

rate. This restriction does not have significant effect on any of the results. 

Maximising (C1) subject to the usual budget constraint (cf. (2) in Section II), 

gives that 
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Differentiating (C3) with respect to fw  and writing the expression in elasticity 

form gives: 
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Maximisation of (C1) gives also that 
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which means that )1(1 −b  is the elasticity of demand. Aggregating this function over 

the 100,000 inhabitants, assumed to live and work in the economy, gives the price of 

fish when cp  is normalised to unity. In the simulations above it was assumed that a  

= 1.45 and b  = 0.5 (and therefore 
fpH ,ε =-2), 0l =100, 0U =50, 1δ =0.4 and ρ =1. 

Given these parameter values 
fwl ,ε =-0.46. 

Differentiating (C3) with respect to fp  and writing the expression in elasticity 

form gives that 
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Given the parameter values above 
fpl ,ε =0.0098. 

 

Appendix D 

γ  and µ  affect the coefficients of the characteristic equation (12) in Section 2 above 

( Dγ  and T− ). In the expressions for these coefficients in Eqs. (22) and (24) in 

Section 3 above γ  and µ  are explicit except that they also affect ϕ .  

Let 
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It then follows that 
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Assume that we are considering values on γ  and µ  such that Eq. (D1) is valid 

for a constant k . If γ  is sufficiently large changes in γ  will have very small effect on 

ϕα lL  and therefore a very small effect on Dγ  and T−  through changes in ϕα lL . 

Eqs. (22) and (24) give that in if ϕα lL  is treated as a constant and if Eq. (D1) is valid 

for a constant k , then Dγ  and T−  will not change and therefore the roots of the 

characteristic equation will remain unchanged. Soving for µ  in Eq. (D1) gives the 

value on µ  that ensures unchanged sability/instability status of the dynamic system as 

a function of γ  in this case, 
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If the value on µ  where the system ceases to be stable for a given value on γ  is 

given by )(γµ s  and γ  is sufficiently large so that ϕα lL  is approximately constant, 

then Eqs. (D1) and (D3) can be used to calculate )(γµ s  for all other sufficiently large 

values on γ . In the special case where ∞→γ  (and ϕα lL  = 1) Eq. (D3) gives that 

lk Ls
2)( αµ =∞ . 

In the case shown in Figures 1 and 2 in Section 4 above ϕα lL  = 0.965 when γ  = 

0.1 and ϕα lL  = 0.996 when γ  = 1.0. 
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