The International Monetary Transmission Mechanism

Santiago Camara (McGill), Lawrence Christiano (Northwestern) Husnu C. Dalgic (Mannheim)

May 24, 2024

Background

- Earlier consensus in International Macroeconomics: Mundell-Fleming
 - Expenditure switching at the center: when US raises R^* , USD appreciates
 - Production predicted to 'switch' from US to foreign economies, via expansion of US imports and contraction of US exports.

Background

- Earlier consensus in International Macroeconomics: Mundell-Fleming
 - Expenditure switching at the center: when US raises R^* , USD appreciates
 - Production predicted to 'switch' from US to foreign economies, via expansion of US imports and contraction of US exports.
- In recent decades the consensus has shifted away from trade and towards finance.
 - Some events: Asian Crisis, Taper Tantrum (2013)
 - Recent influential work:
 - * emphasizes centrality of financial linkages (Miranda-Aggripino and Rey RESTUD20)
 - * expenditure switching channel muted (Gopinath, et al AER2020).

Background

- Earlier consensus in International Macroeconomics: Mundell-Fleming
 - Expenditure switching at the center: when US raises R^* , USD appreciates
 - Production predicted to 'switch' from US to foreign economies, via expansion of US imports and contraction of US exports.
- In recent decades the consensus has shifted away from trade and towards finance.
 - Some events: Asian Crisis, Taper Tantrum (2013)
 - Recent influential work:
 - * emphasizes centrality of financial linkages (Miranda-Aggripino and Rey RESTUD20)
 - * expenditure switching channel muted (Gopinath, et al AER2020).
- We take another look at the international impact of US monetary tightening.

• First, look at impact on the US using a various estimates of monetary policy shocks (mainly emphasize Bauer - Swanson (2023)).

- First, look at impact on the US using a various estimates of monetary policy shocks (mainly emphasize Bauer Swanson (2023)).
 - Generally looks like responses reported elsewhere.
 - ► Interestingly, US imports *contract* sharply after a monetary tightening.
 - * Ozhan (2020) calls it a 'trade channel', see also Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)

- First, look at impact on the US using a various estimates of monetary policy shocks (mainly emphasize Bauer Swanson (2023)).
 - Generally looks like responses reported elsewhere.
 - ► Interestingly, US imports *contract* sharply after a monetary tightening.
 - * Ozhan (2020) calls it a 'trade channel', see also Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)
- Also, look at impact on rest of the world.

- First, look at impact on the US using a various estimates of monetary policy shocks (mainly emphasize Bauer Swanson (2023)).
 - Generally looks like responses reported elsewhere.
 - ► Interestingly, US imports *contract* sharply after a monetary tightening.
 - * Ozhan (2020) calls it a 'trade channel', see also Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)
- Also, look at impact on rest of the world.
 - ► A US monetary tightening appears to lead to a *contraction* in the rest of the world, especially emerging markets.
 - ▶ Interestingly, tightening leads to a substantial *drop* in exports by Rest of World.

- First, look at impact on the US using a various estimates of monetary policy shocks (mainly emphasize Bauer Swanson (2023)).
 - Generally looks like responses reported elsewhere.
 - ► Interestingly, US imports *contract* sharply after a monetary tightening.
 - * Ozhan (2020) calls it a 'trade channel', see also Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)
- Also, look at impact on rest of the world.
 - ► A US monetary tightening appears to lead to a *contraction* in the rest of the world, especially emerging markets.
 - ► Interestingly, tightening leads to a substantial *drop* in exports by Rest of World.
- Interpretation of the IRFs
 - fit small open economy (SOE) models to the IRFs.
 - Do counterfactuals on SOEs to see what factors account most for foreign responses.

VAR Analysis

- Monthly data, 2006-2019
 - Data availability & 2000s different regime for EMEs
 - ► US Monetary policy shocks: Bauer & Swanson (2023) Details
 - Bayesian estimation: Minnesota priors.

VAR Analysis

- Monthly data, 2006-2019
 - Data availability & 2000s different regime for EMEs
 - US Monetary policy shocks: Bauer & Swanson (2023) Details
 - Bayesian estimation: Minnesota priors.
- 8 variables in Y_t :
 - ▶ GDP, PCE, Exports, Imports, trade-weighted nominal exchange rate, S&P 500,
 - Excess Bond Premium (EBP), from Gilchrist-Zakrajsek
 - * Measures marginal value of liquidity of Treasury securities (Devereux-Engle-Wu 2023)
 - \triangleright R^* (sum of 2-year US Treasury bond rate and EBP), default-free short term rate for business

VAR Analysis

- Monthly data, 2006-2019
 - Data availability & 2000s different regime for EMEs
 - US Monetary policy shocks: Bauer & Swanson (2023) Details
 - Bayesian estimation: Minnesota priors.
- 8 variables in Y_t :
 - ▶ GDP, PCE, Exports, Imports, trade-weighted nominal exchange rate, S&P 500,
 - Excess Bond Premium (EBP), from Gilchrist-Zakrajsek
 - * Measures marginal value of liquidity of Treasury securities (Devereux-Engle-Wu 2023)
 - \triangleright R^* (sum of 2-year US Treasury bond rate and EBP), default-free short term rate for business
- Quantity and Price Variables are in Log-Levels.

US Response to Contractionary US Monetary Shock

Key US Results

- Generally, results for US in line with what others get.
 - R* rises,
 - US currency appreciates,
 - ► *S*&*P* 500 goes down,
 - Price level goes down.

Key US Results

- Generally, results for US in line with what others get.
 - ► R* rises,
 - US currency appreciates,
 - ► *S*&*P* 500 goes down,
 - Price level goes down.
- US imports go down a lot more than GDP in percent terms.
 - Fall in import price index suggests that decline is due to fall in demand from US (due to fall in GDP).

International Impact of US Monetary Tightening

• Our VAR for the *i*th non-US economy is

$$Y_{i,t} = A_1 Y_{i,t-1} + A_2 Y_{i,t-2} + C \varepsilon_t^{mp} + \varepsilon_{i,t}, \qquad (1$$
$$Y_{i,t} = \begin{bmatrix} \tilde{Y}_t \\ Y_t^i \end{bmatrix},$$

and \tilde{Y}_t are US variables that affect other economies: $\tilde{Y}_t \sim 3 \times 1$ vector of log GDP^{US}, R^*, PCE^{US}

International Impact of US Monetary Tightening

• Our VAR for the *i*th non-US economy is

$$Y_{i,t} = A_1 Y_{i,t-1} + A_2 Y_{i,t-2} + C \varepsilon_t^{mp} + \varepsilon_{i,t}, \qquad (1$$
$$Y_{i,t} = \begin{bmatrix} \tilde{Y}_t \\ Y_t^i \end{bmatrix},$$

and $ilde{Y}_t$ are US variables that affect other economies: $ilde{Y}_t \sim 3 imes 1$ vector of log GDP^{US}, R^*, PCE^{US}

- Impose that coefficients for each country are the same and no interaction between countries.
 - ► AE (advanced economies): N = 10 Australia, Canada, UK, Germany, Israel, Japan, Korea, Norway, Switzerland, and Sweden.
 - EME (emerging market economies): N = 14 Brazil, Chile, Colombia, Hungary, India, Indonesia, Mexico, Peru, Philippines, Poland, Russia, South Africa, Thailand, Turkey.

Advanced Economies

Emerging Market Economies

- When US raises rates:
 - US import demand declines
 - Rest of world contracts

- When US raises rates:
 - US import demand declines
 - Rest of world contracts
- Hump-shaped ER depreciations
 - Suggests UIP frictions

- When US raises rates:
 - US import demand declines
 - Rest of world contracts
- Hump-shaped ER depreciations
 - Suggests UIP frictions
- Contractions in Foreign Economies
 - Larger output fall in EMEs relative to AEs
 - Large drop in exports in EMEs and AEs

- When US raises rates:
 - US import demand declines
 - Rest of world contracts
- Hump-shaped ER depreciations
 - Suggests UIP frictions
- Contractions in Foreign Economies
 - Larger output fall in EMEs relative to AEs
 - Large drop in exports in EMEs and AEs
- EMEs seem to resort to FX intervention more, in response to US tightening

Small Open Economy Model

- We build a small open economy model
 - US is exogenous, source of monetary tightening shock
- Estimate the model: Match Estimated Impulse Responses
- Results suggest import demand channel is the main channel through which US MP shocks transmit to RoW
- Financial Frictions matter:
 - they amplify the trade shock triggered by monetary contraction.

Small Open Economy Model

1. Portfolio Effect Due to Presence of Capital (No other frictions)

- With a *pure* R^{*} rise (i.e., excluding impact on US imports & prices), households in the SOE reallocate their portfolios towards the US.
 - People pull back on investment inside the SOE.
 - This portfolio effect, in a 'reasonably parameterized' version of the model, overwhelms the expenditure switching force in the M-F model and produces a recession in the SOE.

2. Interest Rate Parity Friction

• Households not inclined to shift their portfolios

- Non-pecuniary reasons, habits
- Regulation, capital controls
- ▶ Introduce "flight to safety" "low risk appetite": Target portfolio moves with R*(non-pecuniary motive)

- Gabaix-Maggiori, Itskhoki-Mukhin, Eichenbaum-Johannsen-Rebelo and others.
 - Accounts for the interest rate premium in countries.
 - Allows FX Interventions to influence the ER

3. Balance Sheet Channel

- Drop in EMEs (esp investment) seems quite substantial.
- Introduce a balance sheet channel following costly state verification model, BGG.
 - Funding for investment requires dollars and local currency.
- When EME currency depreciates, then entrepreneurs suffer capital losses and they borrow less.
 - The effect on investment can be very large.
 - ► Rise in interest rate spread and loan non-performance.
 - Substantial drop in net worth (market capitalization).

4. Dominant Currency Paradigm

- Export prices sticky in dollars (Gopinath, et al AER2020).
- Muted expenditure switching: Exports respond sluggishly to depreciation

Model Estimation

• Match IRFs for AEs & EMEs (Christiano et al 2005, 2010, 2016)

Variable	Description	Peru	EME	AE
γ	Portfolio Adjustment	2.70	1.84	4.68
γ_R	Portfolio Demand Shifter	0.91	28.42	27.90
κ	Investment Adjustment	3.14	6.92	3.03
θ_{R*}	FX Intervention Coefficient	0.36	0.34	0.00
ρ^{FX}	FX Intervention Persistence	0.71	0.89	0.00
η_c	Consumption Elasticity of Substitution	1.43	1.16	0.78
η_x	Export elasticity of Substitution	1.49	1.82	1.40
ν_i	Investment Elasticity of Substitution	1.20	0.81	0.25
η^{f}	Price Elasticity of Exports	2.04	5.17	2.62
γ_f	Export Demand Shifter	2.67	5.71	4.50
θ^x	Export Calvo Stickiness	0.79	0.89	0.82
$1 - \omega_c$	Home Bias, Consumption	0.53	0.54	0.93
γ_I	Home Bias, Investment	0.29	0.29	0.49
γ_x	Home Bias, Exports	0.42	0.41	0.61
γ_f	Export Demand Shifter	2.67	5.71	4.50
ρ_R	MP Persistence	0.86	0.95	0.89
$1 - \phi$	Credit Dollarization	0.50	0.56	0.01
Ϋ́	Steady State Deposit Dollarization	0.40	0.40	0.05
$\frac{F^*}{4 \times GDP}$	Steady State Reserves/GDP	0.30	0.15	0.05

Table 1: Estimated Model Parameters

Advanced Economy Fit

EME Fit

Results

- Large ER depreciation
 - ▶ 'So' large that expected appreciation makes dollar asset returns lower in LCU
 - High $R^* \longrightarrow$ High $R_t R_t^* \frac{S_{t+1}}{S_t}$ UIP Spreads
 - Flight to safety.

Results

- Large ER depreciation
 - 'So' large that expected appreciation makes dollar asset returns lower in LCU
 - High $R^* \longrightarrow$ High $R_t R_t^* \frac{S_{t+1}}{S_t}$ UIP Spreads
 - Flight to safety.
- AE output decline modest: High home bias

Results

- Large ER depreciation
 - 'So' large that expected appreciation makes dollar asset returns lower in LCU
 - High $R^* \longrightarrow$ High $R_t R_t^* \frac{S_{t+1}}{S_t}$ UIP Spreads
 - Flight to safety.
- AE output decline modest: High home bias
- EME: FX Interventions not effective against US MP Shocks Detail
 - > The reduction in US imports that goes with the tightening acts as real shock on the SOE.
 - ► Effective against pure *R*^{*} shocks **●** Detail and UIP Shocks **●** Detail
 - Role of Dollar debt & sticky-in-dollar export prices Detail
- Peru: FX Intervention official policy (Castillo and Medina 2021), large reserves, large interventions

^{▶ (▶} Fit 】 ▶ Invervention Effectiveness 】 ▶ Invervention Effectiveness: Pure R* Shock

Decomposition

- US Monetary shock has 3 effects
 - ▶ Pure interest rate (*R*^{*})
 - GDP & Import demand decline (Y^f)
 - Inflation & expenditure switching (P^f)

Decomposition

- US Monetary shock has 3 effects
 - Pure interest rate (R*)
 - ► GDP & Import demand decline (Y^f)
 - Inflation & expenditure switching (P^f)
- GDP decline (both EME & AE) is mostly due to decline in Y^f
- Trade and financial frictions
 - Trade shock is more severe with financial frictions (through investment)

Advanced Economies - Decomposition

EME - Decomposition

EME - Role of Financial Frictions in Trade Channel

Conclusion

- $\bullet~$ US MP Shocks \longrightarrow US Slowdown \longrightarrow US Import demand decline
- US MP Shocks \longrightarrow Foreign Economies
 - Depreciation of Foreign Currency relative to dollar
 - ▶ Decline in *GDP*^{AE} and bigger decline in *GDP*^{EME}
 - Substantial decline in AE and EME exports.
 - * Intuitively: hard to square with exchange rate depreciation.
- Counterfactual analysis suggests:
 - US MP Shocks \longrightarrow drop in US Import demand (trade channel) \longrightarrow drop in foreign GDP.
 - Financial frictions matter in trade channel.

UIP Spread

Advanced Economy with Low Home Bias

EME Effectiveness of Interventions

EME Effectiveness of Interventions: Pure R^* Shock

EME Effectiveness of Interventions: UIP Shock

Peru Fit

Peru: Effectiveness of FX Interventions

Peru: Effectiveness of FX Interventions: Pure R^* Shock

EME: Role of Dollar Debt & Dollar Invoicing

► back

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - * Loosely, \tilde{x} is the time series that best captures the variation in *ED*1,...,*ED*4.

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - * Loosely, \tilde{x} is the time series that best captures the variation in *ED*1,...,*ED*4.
- Regress \tilde{x}_t on data *publicly known* at *t*:

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - * Loosely, \tilde{x} is the time series that best captures the variation in *ED*1,...,*ED*4.
- Regress \tilde{x}_t on data *publicly known* at *t*:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - * Loosely, \tilde{x} is the time series that best captures the variation in *ED*1,...,*ED*4.
- Regress \tilde{x}_t on data *publicly known* at *t*:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.
 - employment growth, commodity price...

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - * Loosely, \tilde{x} is the time series that best captures the variation in *ED*1,...,*ED*4.
- Regress \tilde{x}_t on data *publicly known* at *t*:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.
 - employment growth, commodity price...
 - Residual is ε_t^m , the estimate of *pure* monetary policy shock (higher ε_t^m means tighter policy).

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - * Loosely, \tilde{x} is the time series that best captures the variation in *ED*1,...,*ED*4.
- Regress \tilde{x}_t on data *publicly known* at *t*:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.
 - employment growth, commodity price...
 - Residual is ε_t^m , the estimate of *pure* monetary policy shock (higher ε_t^m means tighter policy).
- Interpret correlation of \tilde{x}_t with information at time t as reflecting error in private sector's expectation of how the Fed reacts to publicly available news.

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - * Loosely, \tilde{x} is the time series that best captures the variation in *ED*1,...,*ED*4.
- Regress \tilde{x}_t on data *publicly known* at *t*:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.
 - employment growth, commodity price...
 - Residual is ε_t^m , the estimate of *pure* monetary policy shock (higher ε_t^m means tighter policy).
- Interpret correlation of \tilde{x}_t with information at time t as reflecting error in private sector's expectation of how the Fed reacts to publicly available news.
 - They want to remove the latter, so ε_t^m is a 'pure' monetary policy shock. back