The Macroeconomics of Trade Credit

Luigi Bocola and Gideon Bornstein (Stanford & NBER) (Wharton, UPenn)

Reykjavík Economic Conference (May 2024)

Motivation

- Large literature studies the aggregate effects of financial frictions
- Benchmark models share common structure:
 - 1. Firms borrow exclusively from financial intermediaries
 - 2. Shocks to financial sector impact firms' capital and labor demand

Motivation

- Large literature studies the aggregate effects of financial frictions
- Benchmark models share common structure:
 - 1. Firms borrow exclusively from financial intermediaries
 - 2. Shocks to financial sector impact firms' capital and labor demand
- Data about half of non-financial short-term corporate debt owed to other firms

Trade credit is the financing that suppliers of intermediate goods and services extend to their customers in the form of extended payment terms

Motivation

- Large literature studies the aggregate effects of financial frictions
- Benchmark models share common structure:
 - 1. Firms borrow exclusively from financial intermediaries
 - 2. Shocks to financial sector impact firms' capital and labor demand
- Data about half of non-financial short-term corporate debt owed to other firms

Trade credit is the financing that suppliers of intermediate goods and services extend to their customers in the form of extended payment terms

- Q: What are the macroeconomic implications of trade credit relationships?
 - Develop GE model with production lines where trade credit sustained endogenously

• Vertical supply chains where downstream firms need financing to purchase inputs

Suppliers of intermediate goods

- Vertical supply chains where downstream firms need financing to purchase inputs
 - They can borrow from banks, subject to standard financial friction

- Vertical supply chains where downstream firms need financing to purchase inputs
 - They can borrow from banks, subject to standard financial friction
 - ► They can borrow from their suppliers in the context of a long-term relationship

- Vertical supply chains where downstream firms need financing to purchase inputs
 - ► They can borrow from banks, subject to standard financial friction
 - ► They can borrow from their suppliers in the context of a long-term relationship

- Trade credit is a credit multiplier
 - ► Breakdown of trade relationship → unique threat of suppliers
 - ► Use accounts receivable as collateral → economy can sustain more credit overall
- Macro implications of trade credit
 - On average, economy with trade credit sustains higher output
 - Dampens or amplifies effects of financial shocks, depending on suppliers' balance sheet
- Quantitative results (Italian data)
 - Economy sustains higher output relative to spot economy (16%)
 - ► Amplification during the Great Recession: trade credit accounts for 45% of output losses

Model

Environment

- Discrete time, infinite horizon
- Household preferences

$$\sum_{t=0}^{\infty} \beta^t \left[C_t - \chi \frac{L_t^{1+\frac{1}{\psi}}}{1+\frac{1}{\psi}} \right], \qquad C_t = \left[\int y_{i,t}^{\frac{\gamma-1}{\gamma}} di \right]^{\frac{\gamma}{\gamma-1}}$$

- Each industry *i* has a vertical production structure
 - Final good produced by competitive firms: $y_{i,t} = k^{1-\eta_i}$

$$\eta_i \left[\left(\sum_{j=1}^{N_i} x_{ij,t}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \right]^{\eta_i}$$

• Intermediate inputs $(x_{ij,t})$ produced by N_i monopolists using labor: $x_{ij,t} = I_{ij,t}$

Timeline

• Morning

- ► Intermediate-good producers: hire labor, pay wages, produce, and sell their goods
- Final-good firms: produce δ of total production; receive $\delta(1 \pi_i)$ of total sales
- Afternoon
 - Final-good firms: receive remaining sales, repay debt (loans + trade credit)
- Firms can borrow from competitive banks in the morning and repay in the afternoon
- A trade credit contract specifies a triplet:
 - x_{ij,t} quantity delivered in the morning
 - ▶ p^s_{ii,t} spot payment to be paid in the morning
 - $p_{ij,t}^{tc}$ trade credit to be paid in the afternoon

Bank credit

- Legally enforced firm keeps θ_t of revenues in the event of default
 - ► Final-good firms: $b_{i,t} \leq (1 \theta_t) (1 \delta + \delta \pi_i) p_{i,t} y_{i,t}$
 - Intermediate-good firms: $b_{ij,t} \leq (1 \theta_t) \rho_{ij,t}^{tc}$
- θ_t represents financial frictions, follows a Markov process

Trade credit

• Not legally enforced. If costumer defaults, monopolist excludes him from x_{ij,t} forever

$$\mathcal{B}_{ij,t}^{\mathsf{tc}} \leqslant \underbrace{\beta \mathbb{E}\left[\widetilde{J}_{ij,t+1}\right]}_{\mathsf{i} \mathsf{t} \mathsf{t} \mathsf{t} \mathsf{t}}$$

discounted customer surplus

Supplier's problem

- Supplier makes a take-it-or-leave-it offer to its customers
- Supplier has commitment power commits to future prices and quantities

$$\begin{split} \max & \mathbb{E}_{0} \Big[\sum_{t=0}^{\infty} \beta^{t} \left(p_{ij,t}^{s} + p_{ij,t}^{tc} - W_{t} x_{ij,t} \right) \Big] \\ & p_{ij,t}^{s} \leqslant \{1 - \theta_{t} [\delta \pi_{i} + (1 - \delta)]\} p_{i,t} y_{i,t} - \sum_{j' \neq j} p_{ij',t}^{s} \\ & p_{ij,t}^{tc} \leqslant \beta \mathbb{E}_{t} \left[\tilde{J}_{ij,t+1} \right] \\ & \text{(customer BC)} \\ & W_{t} x_{ij,t} - p_{ij,t}^{s} \leqslant (1 - \theta_{t}) p_{ij,t}^{tc} \\ & \tilde{J}_{ij,t} \geqslant 0 \\ & \tilde{J}_{ij,t} = \mathbb{E}_{t} \left\{ \sum_{\tau=0}^{\infty} \beta^{\tau} \left[p_{i,t} y_{i,t} - p_{i,t}^{(-j)} y_{i,t}^{(-j)} - p_{ij,t}^{s} - p_{ij,t}^{tc} \right] \right\} \\ & \text{(customer value)} \end{split}$$

• Study symmetric equilibrium where all suppliers offer the same contract

Special Case

A special case

- Single industry with
 - One supplier ($N_i = 1$)
 - Fixed wages ($\psi = 0$)
 - No delayed payments from households ($\pi_i = 0$)
- Spot economy counterfactual:

$$\begin{array}{ll} \max & p^s - W x \\ \text{s.t.} & p^s - \delta x^\eta \leqslant (1-\theta)(1-\delta) x^\eta \end{array}$$

- Goals of special case analysis:
 - Characterize the deterministic steady state
 - Provide intuition for credit multiplier
 - Study the response to a negative financial shock
 - Provide intuition for smoothing vs. amplification (in paper)

Monopolist problem

max
$$p^s - Wx$$

s.t. $p^s - \delta x^\eta \leq (1 - \theta)(1 - \delta)x^\eta$

- Optimality condition: $[\delta + (1 \delta)(1 \theta)]\eta x^{\eta 1} = W$
- Absent financial frictions ($\theta = 0$): output is at its first-best level
 - Monopolist maximizes surplus and extracts it all
 - ► Feasible: customers can borrow from banks entire afternoon revenues
- With financial frictions ($\theta > 0$):
 - Output distorted downwards: marginal benefit lower than marginal product

The economy with trade credit

Two regions

- $\theta \leqslant \overline{\theta}$: Output is first best despite financial frictions
- $\theta > \overline{\theta}$: Output distorted downwards

The economy with trade credit - mechanism

Monopolist borrowing constraint slack ($\theta \leqslant \overline{\theta}$)

trade credit revenues

- Monopolist optimality condition: $[\delta + (1-\delta)(1-\theta)]\eta x^{\eta-1} + \widetilde{\mu\theta(1-\delta)\eta x^{\eta-1}} = W$
- First-best level obtained even with $\theta > 0$
- How is the first-best allocation financed?
 - Credit is better allocated (more allocated towards labor)
 - Credit is larger (higher output than spot economy)

Monopolist borrowing constraint binds ($\theta > \overline{\theta}$)

- Monopolist borrowing constraint: $Wx \leq [\delta + (1 \delta)(1 \theta)] x^{\eta} + (1 \theta)p^{tc}$
- Bank credit not sufficient to cover first-best allocation wage bill

Quantitative Analysis

Trade credit across industries

- Italian data: annual balance sheet data from Orbis + input-output tables
- Model predicts trade credit increases with

	Dep. variable: Accounts payable/sales			
	(1)	(2)	(3)	(4)
$\pi_i \rightarrow \text{Accounts receivable/sales}$	0.297***			0.326***
	(0.029)			(0.027)
$\eta_i \rightarrow$ Intermediate inputs /sales		0.154***		0.239***
		(0.028)		(0.020)
$1/N_i \rightarrow HHI^{supplier}$			0.655***	0.303***
			(0.111)	(0.085)
Adj. R ²	0.329	0.092	0.116	0.477
Obs.	522	522	522	522

Note: regression includes time fixed effects.

 $y_{j,t} = \alpha_j + \delta_t + \beta_t \times \mathbb{1}\left[\overline{\theta}_i \leqslant \text{median}\left(\overline{\theta}\right)\right] + \Gamma' X_{j,t} + \epsilon_{j,t}$

Notes: $X_{j,t}$ includes interaction of times fixed effect with dummies capturing firm's size, capital intensity, and sector of operation (manufacturing and service).

Macro implications of trade credit

Compare benchmark economy to one where all payments must be spot payments

Steady state: The credit multiplier

	Benchmark	Spot economy
Bank credit	1.00	0.33
To final good firms	0.73	0.33
To suppliers	0.27	
% allocated to wages	0.96	0.03
Output	1.00	0.86

Credit is larger and better allocated

Financial shock: Amplification

Trade credit accounts for 45% of output decline

Conclusion

Conclusion

- Equilibrium model with both bank and trade credit
 - Trade credit sustained by threat of relationship breakdown
 - Suppliers can borrow from banks, raising the overall level of credit
- Model validation
 - Fits trade credit patterns across sectors
 - Identifies sectors that respond more to financial shocks
- Use model to quantify macroeconomic effects of trade credit
 - Higher output on average (16%)
 - But higher volatility: amplifies the impact of financial shocks on output
- In paper: study effectiveness of targeted subsidies during a crisis

Thank you!